Поиск
?


Скопировать ссылку на результаты поиска



Всего: 9    1–9

Добавить в вариант

Задание № 24
i

Если x0  — ко­рень урав­не­ния 0,01 умно­жить на 2 в сте­пе­ни x умно­жить на 5 в сте­пе­ни x = левая круг­лая скоб­ка 0,01 пра­вая круг­лая скоб­ка в квад­ра­те умно­жить на 10 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 3 пра­вая круг­лая скоб­ка , то зна­че­ние вы­ра­же­ния 2 левая круг­лая скоб­ка x_0 минус 1 пра­вая круг­лая скоб­ка :x_0 равно... .


Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка плюс 128=3 в сте­пе­ни левая круг­лая скоб­ка 1 минус x в квад­ра­те пра­вая круг­лая скоб­ка умно­жить на 12 в сте­пе­ни левая круг­лая скоб­ка x в квад­ра­те пра­вая круг­лая скоб­ка .


Аналоги к заданию № 83: 443 473 503 ... Все


Задание № 205
i

Най­ди­те про­из­ве­де­ние суммы кор­ней урав­не­ния 4 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни левая круг­лая скоб­ка x минус 1 пра­вая круг­лая скоб­ка =2 в сте­пе­ни левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка минус 2 в сте­пе­ни 6 на их ко­ли­че­ство.


Аналоги к заданию № 205: 685 715 745 ... Все


Урав­не­ние  дробь: чис­ли­тель: 4x минус 9, зна­ме­на­тель: 5 конец дроби плюс 2=x минус дробь: чис­ли­тель: 11 минус x, зна­ме­на­тель: 5 конец дроби рав­но­силь­но урав­не­нию:

1) 6 в сте­пе­ни x =1
2) 6 в сте­пе­ни x =6
3) 2 в сте­пе­ни x =32
4) 2 в сте­пе­ни x =64
5) 5 в сте­пе­ни x =25

Аналоги к заданию № 223: 793 823 853 ... Все


Задание № 264
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 81 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 9 в сте­пе­ни x плюс 8 умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 81 пра­вая круг­лая скоб­ка =0.


Аналоги к заданию № 264: 924 954 984 ... Все


Если x_1 и x_2  — корни урав­не­ния 3 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка =48 плюс 6 в сте­пе­ни x минус 8 умно­жить на 3 в сте­пе­ни x , то зна­че­ние 3 в сте­пе­ни левая круг­лая скоб­ка x_1 плюс x_2 пра­вая круг­лая скоб­ка равно ... .


Аналоги к заданию № 1150: 1180 1210 Все


Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.


Аналоги к заданию № 1324: 1355 Все


Най­ди­те сумму квад­ра­тов кор­ней урав­не­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 6 конец ар­гу­мен­та левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка плюс 4 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка 2 минус x пра­вая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка , зна­ме­на­тель: x в сте­пе­ни 4 плюс 2x в квад­ра­те минус 24 конец дроби =0.


Аналоги к заданию № 1681: 1713 Все


Ре­ши­те урав­не­ние  18 в сте­пе­ни x плюс 36 = 3 в сте­пе­ни x плюс 6 в сте­пе­ни левая круг­лая скоб­ка x плюс 2 пра­вая круг­лая скоб­ка . В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния  n умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x_0 пра­вая круг­лая скоб­ка , где x0  — наи­боль­ший ко­рень, n  — ко­ли­че­ство кор­ней дан­но­го урав­не­ния.


Аналоги к заданию № 2305: 2337 Все

Всего: 9    1–9